The invention described here offers a low-cost method of remote flight control suitable for use in toy airplanes and ornithopters (flapping-wing aircraft). To accomplish this, the aircraft is powered by a reversible electric motor. The propeller or flapping wing produces a torque force, which is dependent upon the direction of motor rotation. This torque force is used to bank the aircraft and cause a turn. In the case of an airplane, a reversible-pitch propeller enables the propeller to produce thrust in either rotational direction. In the case of an ornithopter, the torque force results from an asymmetrical motion of the wings. By reversing the motor direction, the asymmetry is reversed and the ornithopter turns in the opposite direction. This control method reduces costs, because unlike other toy aircraft control systems, it provides full directional control of the aircraft without the need for any servo or actuator in addition to the drive motor.
This information is part of a study by Oasis Global, Inc. of all space inventions filed at the United States Patent and Trademark Office, and is provided for informational purposes only. It is not an endorsement of any particular assignee, inventor or invention. Although Peter A. Koziol represents inventors and assignees of space inventions he does not represent all of the inventors and assignees listed. The prosecuting attorney agent or firm for each patent is identified by the United States Patent and Trademark Office in the patent specfication, which can be viewed by clicking on the patent image or downloading the patent document. For more information regarding Mr. Koziol's background and experience, or to learn more about space inventions, please contact Mr. Koziol.
Enter your name and phone number, and Peter will call you back as soon as possible.
Disclaimer: The hiring of a lawyer is an important decision that should not be based solely upon advertisements. Before you decide, ask us to send you free written information about our qualifications and experience. Read More >