An air pump positioned within a hollow space in an aerodynamic structure for controlling the flow over an aerodynamic surface thereof, includes a movable member linearly displaced by a very low friction piston mechanism and a compression chamber open to the exterior of the aerodynamic surface through an orifice. Reciprocal displacement of the very low friction movable member changes the volume of the compression chamber to alternately expel fluid (e.g., air) from and pull fluid into the compression chamber through the orifice. The movable member includes a piston oscillating within a piston housing each having an ultra-low friction coating for improved thermal performance and reduced maintenance. Fluid intake to the compression chamber may be increased through the use of a one-way valve located either in the aerodynamic surface, or in the piston. Multiple flapper valves may surround the orifice in the aerodynamic surface for increased fluid control.
This information is part of a study by Oasis Global, Inc. of all space inventions filed at the United States Patent and Trademark Office, and is provided for informational purposes only. It is not an endorsement of any particular assignee, inventor or invention. Although Peter A. Koziol represents inventors and assignees of space inventions he does not represent all of the inventors and assignees listed. The prosecuting attorney agent or firm for each patent is identified by the United States Patent and Trademark Office in the patent specfication, which can be viewed by clicking on the patent image or downloading the patent document. For more information regarding Mr. Koziol's background and experience, or to learn more about space inventions, please contact Mr. Koziol.
Enter your name and phone number, and Peter will call you back as soon as possible.
Disclaimer: The hiring of a lawyer is an important decision that should not be based solely upon advertisements. Before you decide, ask us to send you free written information about our qualifications and experience. Read More >