A computer implemented method, apparatus, and computer usable program product for symmetric and anti-symmetric control of aircraft flight control surfaces to reduce wing-body loads. Commands are sent to symmetrically deploy outboard control surfaces to shift wing air-loads inboard based on airplane state and speed brake deployment. Surface rate retraction on a wing with peak loads is limited to reduce maximum loads due to wheel checkback accompanied by utilization of opposite wing control surfaces to retain roll characteristics. Airloads are shifted inboard on a swept wing to move the center of pressure forward, thereby reducing the tail load required to perform a positive gravity maneuver. In a negative gravity maneuver, speed brakes are retracted, thereby reducing the positive tail load and reducing the aft body design loads. High gain feedback commands are filtered from wing structural modes above one hertz by a set of linear and non-linear filters.
This information is part of a study by Oasis Global, Inc. of all space inventions filed at the United States Patent and Trademark Office, and is provided for informational purposes only. It is not an endorsement of any particular assignee, inventor or invention. Although Peter A. Koziol represents inventors and assignees of space inventions he does not represent all of the inventors and assignees listed. The prosecuting attorney agent or firm for each patent is identified by the United States Patent and Trademark Office in the patent specfication, which can be viewed by clicking on the patent image or downloading the patent document. For more information regarding Mr. Koziol's background and experience, or to learn more about space inventions, please contact Mr. Koziol.
Enter your name and phone number, and Peter will call you back as soon as possible.
Disclaimer: The hiring of a lawyer is an important decision that should not be based solely upon advertisements. Before you decide, ask us to send you free written information about our qualifications and experience. Read More >