A deployable fairing is driven off of high-pressure gun gases to reduce aerodynamic drag and extend the range of the artillery shell. An artillery shell is provided with a fabric fairing and a piston attached thereto in a rear section of the shell in a stowed state and a chamber. During launch high-pressure gun gasses are captured and stored in the chamber. Once the shell clears the end of the artillery tube, the pressure aft of the shell drops from the high pressure inside the tube to atmospheric pressure outside the tube. The high pressure gun gasses stored in the chamber act over the top surface of the piston to drive the piston aft against the much lower pressure behind the projectile to deploy the fabric fairing attached thereto to reduce the base area of the projectile creating or extending the boat-tail of the shell, hence reduce aerodynamic drag. The aft driven piston engages a locking mechanism that locks the piston in a deployed position.
This information is part of a study by Oasis Global, Inc. of all space inventions filed at the United States Patent and Trademark Office, and is provided for informational purposes only. It is not an endorsement of any particular assignee, inventor or invention. Although Peter A. Koziol represents inventors and assignees of space inventions he does not represent all of the inventors and assignees listed. The prosecuting attorney agent or firm for each patent is identified by the United States Patent and Trademark Office in the patent specfication, which can be viewed by clicking on the patent image or downloading the patent document. For more information regarding Mr. Koziol's background and experience, or to learn more about space inventions, please contact Mr. Koziol.
Enter your name and phone number, and Peter will call you back as soon as possible.
Disclaimer: The hiring of a lawyer is an important decision that should not be based solely upon advertisements. Before you decide, ask us to send you free written information about our qualifications and experience. Read More >