An amount of propellant remaining in an orbiting satellite can be estimated in a more accurate manner than is possible with conventional approached. Pressure and temperature telemetry data received from the satellite can be analyzed using a maximum likelihood estimation approach that reconstructs a predicted tank pressure signal using the temperature data and determines a pressurant volume necessary to make the reconstructed pressure signal match the received pressure signal. Drift of the pressure data received from pressure transducers in the satellite can also be addressed using the current subject matter, as can issues including but not limited to inaccessible propellant due to satellite spin, tank expansion under pressure, and the like. Independent determinations of the amounts of propellant remaining can be made using moment of inertia calculations in situations in which an axis of spin of the satellite is known a priori.
This information is part of a study by Oasis Global, Inc. of all space inventions filed at the United States Patent and Trademark Office, and is provided for informational purposes only. It is not an endorsement of any particular assignee, inventor or invention. Although Peter A. Koziol represents inventors and assignees of space inventions he does not represent all of the inventors and assignees listed. The prosecuting attorney agent or firm for each patent is identified by the United States Patent and Trademark Office in the patent specfication, which can be viewed by clicking on the patent image or downloading the patent document. For more information regarding Mr. Koziol's background and experience, or to learn more about space inventions, please contact Mr. Koziol.
Enter your name and phone number, and Peter will call you back as soon as possible.
Disclaimer: The hiring of a lawyer is an important decision that should not be based solely upon advertisements. Before you decide, ask us to send you free written information about our qualifications and experience. Read More >